8th International Conference and Exhibition on

MATERIALS SCIENCE AND ENGINEERING May 29-31, 2017 Osaka, Japan

Controlling crystal formation for more efficient and reproducible perovskite solar cells

Siew-Lay Lim

Institute of Materials Research and Engineering, Singapore

Perovskite (CH₃NH₃PbI₃) solar cells have been fabricated by a two-step sequential deposition process whereby a PbI₂ film is first spin-coated on a mesoporous TiO₂ film, followed by immersion in CH₃NH₃I (MAI) solution for conversion to perovskite (PbI₂ + CH₃NH₃I → CH₃NH₃PbI₃). Varying amounts of residual PbI₂ remain in the perovskite active layer due to incomplete conversion. The losses in photocurrent due to the residual PbI₂ result in poor and inconsistent solar cell performance. As the PbI₂ morphology is likely to have a significant effect on the formation and composition of the nanocrystalline perovskite layer, we investigate the PbI₂ film formation via three different processes (thermal drying, solvent extraction and as-deposited) and the effects of these processes on solar cell performance. It is found that the dense, multi-crystal aggregates in thermally dried PbI₂ films hinder MAI penetration and reaction, resulting in approximately 19% residual PbI₂ in the perovskite layer after the conversion process. The residual PbI₂ fraction is significantly reduced to approximately 4% when the PbI₂ film is formed by solvent extraction using dichloromethane (DCM-extraction). The loosely packed disc-like PbI₂ crystals facilitate MAI penetration and reaction. Near 100% conversion to perovskite is achieved when the as-deposited PbI₂ film is immersed in MAI solution without any further drying. Perovskite solar cells fabricated from as-deposited PbI₂ films show superior and more consistent performance with an average power conversion efficiency of 14.60 ± 0.55% compared to that of 11.20 ± 3.10% when thermally dried PbI₂ films are used. By optimizing the PbI₂ and perovskite crystal formation processed perovskite solar cells are promising candidates for future urban sustainability solutions.

Biography

Siew-Lay Lim received her BE and PhD in Chemical and Biomolecular Engineering from the National University of Singapore, Singapore. She is currently a Research Scientist at the Institute of Materials Research and Engineering, Agency of Science, Technology and Research (A*STAR), Singapore. Her research interests include organic and hybrid electronic materials and devices, such as transistors, photovoltaic cells and LEDs, materials systems and processes for printed electronics and large area printing of functional materials.

limsl@imre.a-star.edu.sg

Notes: