Effects of estrogen related receptor α inhibition on metabolic adaptations to endurance training in skeletal muscle of male wistar rats

Soheil Aminizadeh
Kerman University of Medical Sciences, Iran

Fuel consumption is dependent on severity and duration of the exercise. Medium-Chain Acyl-CoA Dehydrogenase (MCAD) and Carnitine Palmitoyl Transferase 1 (CPT1) are involved in this process. MCAD performs the first step in fatty acid oxidation and CPT1 catalyzes the limiting step in mitochondrial beta oxidation. Estrogen-Related Receptor-alpha (ERRα) regulates the genes involved in fatty acid oxidation and mitochondrial biogenesis. The aim of this study was to investigate the effect of 4 weeks of endurance training on the expression of genes involved in lipid metabolism. 30 male wistar rats (8 weeks-old) were randomly divided into four groups: Control (n=7), XCT790 (n=8), trained (n=8) and trained+XCT790 (n=7). Expression of ERRα, MCAD, CPT-1β, PGC-1α, PDK4 and CS genes was measured by Real-Time PCR and quantified by $2^{\Delta \Delta CT}$ method. The expression of ERRα, MCAD, CPT1β, PGC-1α, PDK4 and CS genes were significantly higher in trained compared to control group. The expression of MCAD and CPT1β genes was significantly lower in trained+XCT790 compared trained and the expression of PDK4, CPT1β and PGC-1α were significantly higher in Trained+XCT790 compared to control+XCT790. Taken together, expression of ERRα is a trainable factor and its changes are parallel with higher expression of the enzymes which involved in lipid metabolism. This indirectly suggests a significant role of ERRα in adaptation of lipid metabolism evoked by endurance training.

soheilaminizadeh@yahoo.com

Notes: