conferenceseries.com

7th International Conference on

TISSUE ENGINEERING & REGENERATIVE MEDICINE

October 02-04, 2017 Barcelona, Spain

Restoration of the corneal epithelium using a novel BioinkTM

Hannah Frazer¹, Jingjing You^{1,2}, Simon Cooper³, Chris Hodge⁴, Xiao Liu⁵, Zhi Chen⁵, Adam Taylor⁵, Erin McColl⁵, Gordon Wallace⁵ and Gerard Sutton^{1,3,4} ¹Sydney Medical School, Australia ²University of New South Wales, Australia ³Lions NSW Eye Bank, Australia ⁴Vision Eye Institute, New South Wales, Australia ⁵University of Wollongong, Australia

The cornea is the transparent outermost layer of the eye and plays both a tectonic and refractive role. Corneal trauma represents the most common ophthalmic emergency presentation with approximately ¾ of all cases due to corneal foreign bodies or abrasions. These injuries are estimated to cost the Australian population more than \$155 million per year and if not treated effectively, can lead to infection and scarring resulting in permanent, impaired vision. We have developed a novel, xenogeneic-free corneal BioinkTM using a human platelet lysate (hPL) base that promotes the proliferation and migration of corneal epithelial cells. hPL has previously been shown to promote mesenchymal stromal cell growth. Our BioinkTM sets in a matter of minutes as a transparent, gel-like substance. We performed cell proliferation and scratch wound-healing assays using human corneal epithelial cell lines (HCE-T), and rheology tests to examine its mechanical properties. Our preliminary results have shown the BioinkTM supports multidirectional growth and stratification of HEC-T and the cells completely biodegrade the BioinkTM once forming a complete monolayer. Performing flow cytometry using Ki67, we found that BioinkTM promotes proliferation in HCE-T at a rate comparable to foetal bovine serum (FBS), which is the current standard serum used to culture HCE-T. Scratch wound assays showed that the cells in the BioinkTM and FBS both promoted full-wound closure at a comparable rate. Rheology testing demonstrated the high gel-forming potential and shear-thinning property of our BioinkTM, which demonstrates its capability for extrusion bioprinting. Our BioinkTM represents a potential alternative to existing treatments.

Biography

Hannah Frazer is currently completing her MPhil at Sydney Medical School, University of Sydney.

hfra1291@uni.sydney.edu.au

Notes: