

2nd World Congress on Biomarkers & Clinical Research

12-14 September 2011 Baltimore, USA

Molecular diagnostic system for gliomas based on gene expression profiling

Mitsuaki Shirahata¹,
Shigeyuki Oba², Yoshitaka
Narita³, Yoshihiro Muragaki⁴,
Motohiko Maruno⁵, Ryo
Matoba⁶, Susumu Miyamoto⁷,
Kikuya Kato⁸

¹The TazukeKofukai Medical Research Institute Kitano Hospital, Dept.of Neurosurgery

²Kyoto University Graduate School of Informatics, Dept.of Systems Science, Integrated Systems Biology Laboratory

³National Cancer Center, Dept.of Neurosurgery

⁴Tokyo Women's Medical University, Dept. of Neurosurgery

⁵Osaka Medical Center for Cancer and Cardiovascular Diseases, Dept.of Neurosurgery

⁶DNA Chip Research Inc.

⁷Kyoto University, Dept.of Neurosurgery

⁸Research Institute, Osaka Medical Center for Cancer and Cardiovascular Diseases

Background: As the histological diagnosis of glioma is often difficult, the patients outcome will fail to match the predicted biological behavior. Therefore, it is clinically important to identify the molecular prognosis predictors for gliomas.

Purpose: Our aim was to identify prognostic gene signature for gliomas based on gene expression profiling.

Materials and Methods: We selected 3456 genes expressed in gliomas, including 3012 genes found in a glioma expressed sequence tag collection. The expression levels of these genes in 152 gliomas (100 glioblastomas, 21 anaplastic astrocytomas, 19 diffuse astrocytomas, and 12 anaplastic oligodendroglomas) were measured using adaptor-tagged competitive polymerase chain reaction, a high-throughput reverse transcription-polymerase chain reaction technique. We applied unsupervised and supervised principal component analyses to elucidate the prognostic molecular features of the gliomas. The prognostic gene scores (PGS) were determined by expression levels of 58 prognostic genes identified by Cox regression analysis. The prognosis predictability of the PGS was tested in independent sample sets.

Results: The global gene expression data matrix was significantly correlated with the histological grades, oligo-astro histology, and prognosis. Using 110 gliomas, we identified PGS based on the expression profile of 58 genes, resulting in a scheme that reliably classified the glioblastomas into two distinct prognostic subgroups. The prognosis predictability of PGS was then tested with another 42 cases. Multivariate Cox analysis of the glioblastoma patients using other clinical prognostic factors, including age and the extent of surgical resection, indicated that the PGS was a strong and independent prognostic parameter.

The clinical utility of the PGS was demonstrated in another 55 cases of anaplastic glioma.

Conclusion: The gene expression profiling identified clinically informative prognostic molecular features in astrocytic and oligodendroglial tumors that were more reliable than the traditional histological classification scheme.