

3rd International Conference and Exhibition on BIOSENSOFS & BIOELECTONICS August 11-13, 2014 Hilton San Antonio Airport, San Antonio, USA

Direct detection of lead in RTIL using DPASV on BDD film microcells and determination of concentration factor after extraction from aqueous samples

Amel Sbartai¹, Amani Chrouda¹, Philippe Namour^{1,2}, Nicolas Sarrut³, Jan Krejci⁴, Radka Kucerova⁴ and Nicole Jaffrezic-Renault¹ ¹University of Lyon, France ²IRSTEA, France ³CEA-LETI, France ⁴BVT Technologies, Czech Republic

E uropean Water Framework Directive predicted non effect concentrations for water organisms require determination of lead at very low concentrations: $1.2 \mu g/L$. These low concentrations, generally in complex sample matrixes, have influence on the sensitivity and accuracy of the analytical method. Hence, prior to determination, a clean-up and/or enrichment step is highly necessary. In this work, for the first time, the determination of Pb was performed using Differential Pulse Anodic Stripping Voltammetry (DPASV) on a boron-doped diamond microcell directly in the room temperature ionic liquid (RTIL) extracting phase: Butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide which contained the complexing agent Trioctylphosphineoxide (TOPO). The calibration curves with and without TOPO are linear in the concentration range 0-4 $\mu g/L$ of Pb, with a detection limit (DL) of 0.3 $\mu g/L$. The optimum conditions for higher concentration factor were determined: the aqueous phase should be a 0.1 M citrate buffer with pH2. The obtained concentration factor was 5.0 \pm 0.2 for lead in RTIL without chelating agent TOPO, and 9.0 \pm 0.10 in IL with chelating agent TOPO.

asbartai@hotmail.com