

Synthesis and characterization of Fe (III)-Pyrimethamine complexe and its potential use as MR-imaging probe for assessing the P-glycoprotein function

Poladate Kantakam, Samlee Mankhetkorn and Nathupakorn Dechsupa

Chiang Mai University, Thailand

Pyrimethamine is an anti-malaria drug known as a substrate of *P. falciparum* P-glycoprotein homologue protein 1 and human P-glycoprotein. In this study it was selected to be a ligand for constructing a ferric ion based molecular probe for MR imaging the multidrug transport proteins. The Fe(III)-Pyrimethamine complex was spectrophotometrically characterized at 325 nm. It was immediately done with stoichiometry of 1 mole of Fe³⁺ to 3 mole of pyrimethamin. The [Fe-Pyrimethamine3]³⁺ was efficiently enhanced an increase in the on proton relaxivity. The relaxivity of T1 and T2 relaxation time determined using soft tissue materials such as 7% acrylamide gel was equal to 7 mM⁻¹.s⁻¹ and 10 mM⁻¹.s⁻¹,

respectively. The specific interaction of the complex with intrinsic MDR proteins particularly P-glycoprotein and MRP1 protein and its biodistribution in wistar rats were performed in 1.5 T medical MRI instrument. The MRI images revealed that the complex diffused into the tissues as a function of time and has retention time in these tissues at least 2 hours. This retention time is long enough for analyzing the function of P-glycoprotein and MRP1 protein. The [Fe-Pyrimethamine3]³⁺ complex might be considered as a potential molecular probe for MR Imaging and with further investigation it could be used for monitoring the drug response in cancer chemotherapy regimens.

Biography

Poladate Kantakam is M.Sc. student of Medical Radiation Science at Faculty of Associated Medical Sciences, Chiang Mai University.