13th International Conference on

Metabolomics and Systems Biology

October 11-12, 2018 | Zurich, Switzerland

A hyperthermostable multidomain GH family 3 β-glucosidase from *Thermotoga naphthophila* RKU-10^T: Cloning, characterization and thermodynamic analysis

Ikram UI Haq Government College University, Pakistan

A novel gene (2,166 bp) was cloned from a hyperthermophilic eubacterium *Thermotoga naphthophila* RKU-10^T and overexpressed a multidomain β -glucosidase protein (TnBglB) belonging to glycoside hydrolase family 3 (GH3) in *Escherichia coli* BL21 CodonPlus. An extracellular TnBglB enzyme with a molecular weight of 81kDa, was purified to homogeneity. Purified TnBglB showed peak activity at 85°C and pH 5.0 using p-nitrophenyl- β -D-glucopyranoside (PNPG) as substrate. Enzyme displayed high thermal stability over a broad range of temperature (60-90°C) and quite stable after 480 min incubation at 85°C. Enzyme activity was enhanced by 175% by the addition of 10mM Ca²⁺ cation and in the presence of short chain alcohol (10%v/v) activity was improved by 185%. K_i value of TnBglB for glucose and xylose inhibition was estimated 150 mM and 200 mM, respectively. K_m, V_{max}, k_{cat} and k_{cat} K_m⁻¹ values, towards PNPG as substrate, were 0.45mM, 153 mmolmg⁻¹min⁻¹, 1214285s⁻¹ and 2698413, respectively. Thermodynamic parameters for PNPG hydrolysis by TnBglB like ΔH^* , ΔG^* and ΔS^* were calculated at 85°C as 24.09kJ mol⁻¹, 46.55kJ mol⁻¹ and -62.74Jmol⁻¹K⁻¹, respectively. TnBglB displayed a half-life (t1/2) of 4.44 min at 94°C with denaturation parameters of enzyme including ΔH^*D , ΔG^*D and ΔS^*D were 283.78 kJ mol-1, 108.69 kJ mol-1 and 0.477 kJ mol⁻¹ K⁻¹, respectively. TnBglB showed great affinity towards p-nitrophenyl substrates and cellobiose. Possible catalytic sites involved in hydrolyzing different p-nitrophenyl substrates are proposed based on TnBglB docking studies with its substrates. A hyperthermotolerant TnBglB with great catalytic efficiency and low product inhibition, also exhibited independence of various chemical inhibitors. All noteworthy features make TnBglB suitable candidate for industrial applications.

ikmhaq@yahoo.com