

11th Annual Congress on
CHEMISTRY
September 12-13, 2018 Singapore

Galactofuranose-based compounds as potential inhibitors of GlfT1

Benice Lyrem Joy S Lim¹, Completo Gladys Cherisse J¹, Tabilog Andrew Exequiel S¹, Alias Mikel Jason D G^{1,2}, Angkico Rowin Christian B², Espejo Jaevee William T², Sumalde Jan Michael C², Joe Maju³, Zheng Blake³ and Lowary Todd L³

¹University of the Philippines-Los Baños, Philippines

²De La Salle University, Philippines

³University of Alberta, Canada

The enzyme Galactofuranosyltransferase 1 (GlfT1), initiates the elongation of the Galactan chain of the mycolyl-Arabinogalactan Peptidoglycan (mAGP) complex of the mycobacterial cell wall. mAGP is essential for the microorganism's viability and its Galactan chain backbone is comprised of alternating 5- and 6-linked β -D-Galactofuranose (Galf) units that are not found in humans and thus, enzymes (e.g. GlfT1) involved in its biosynthesis might serve as putative therapeutic targets in diseases such as tuberculosis. Several potential inhibitors resembling the polysaccharide glycan were synthesized and tested against GlfT1.

Biography

Benice Lyrem Joy S Lim is a MS Chemistry student at the University of the Philippines Los Baños. She works as a Research Associate in the laboratory of Dr. Gladys Cherisse J Completo. Her field of interests involves synthetic and Natural products chemistry.

bslim@up.edu.ph

Notes: