Wear behaviours of boron-bearing new hard facing alloys
Yi-ting Chang, Tien-Hao Chang and Su-Jien Lin
National Tsing Hua University, Taiwan

High chromium cast irons (HCCIs) are excellent wear-resistant materials and have been widely used as a hardfacing alloy for wear-affected equipment operated under extreme conditions, such as facilities in the slurry pumping systems used in the oil sands handling, mineral processing, coal and cement industries. In the previous research, we fabricate hardfacing alloys AlCrFeMnNiMoBCNb with abrasive wear resistance of $12.5 \mathrm{~m} / \mathrm{mm} 3$, which beyond six times the abrasive wear resistance of HCCIs. In this study, based on the previous study AlCrFeMnNiMoBCNb alloy, we research the effect of each element of the AlCrFeMnNiMoBCNb alloy by eliminating each element independently. In addition, we utilize Taguchi methods by adjusting the content of Al, Mn, and Ni (by decreasing Cr) elements to further improve the wear resistance, which found that Cr was the key element to the wear characteristics of new hardfacing alloys. Furthermore, by increasing Cr element, we significantly enhance the abrasive wear resistance of new hardfacing alloys up to $24.5 \mathrm{~m} / \mathrm{mm} 3$, which beyond 12 times of HCCIs.

Biography

Yi-ting Chang is a graduate student in a Master's program of Materials Science and Engineering at National Tsing Hua University, Hsinchu, Taiwan. She is currently studying the impact and wear characteristics of high entropy hardfacing alloys, trying to find better materials for replacement of HCCIs in cement industries.

Notes:

