conferenceseries.com

3rd World Chemistry Conference &

World Congress on

BIOTHERAPEUTICS AND BIOANALYTICAL TECHNIQUES

September 11-12, 2017 Dallas, USA

The two-phase state of chemicals under studied and unstudied conditions

Anatoly I Vitvitskiy FSUE RSC Applied Chemistry, Russia

Statement of the Problem: The two-phase state of chemicals in the systems crystal-gas (cr-g) and liquid-gas (l-g) is characterized by the equilibrium pressure (saturated vapor pressure) – P_p (Pa) at the temperature T (K). The results of the research are usually reference table data, as the thermodynamic concepts do not allow describing in one equation the whole investigated region of the equilibrium parameters.

Methodology & Theoretical Orientation: The equilibrium parameters P_p and T, are presented in coordinates $\ln (P_pT) - 1/T$, forms a straight logarithmic, which corresponds to the exponential dependence $P_p = (P_mT_m/T) \exp (1 - Tm/T)$, where T_m is the temperature, which determines the slope of the logarithmic straight and their upper limit in the systems cr-g or l-g; $P_p = P_m$ at $T = T_m$.

Findings: Discovered that the heat of formation of one mole of a gaseous substance from a liquid or solid state - Q (J/ (mol K)) related to the temperature by $Q = R (T_m - T) = Q_m - RT$, where $R = 8.314 \text{ J/} (\text{mol} \cdot \text{K})$ is the universal gas constant; Qm = RTm. Both equations are applicable in the temperature range $0 < T < T_m$; at $T = T_m$ and $P_p = P_m$, Q = 0; at $T \rightarrow 0$, $P_p \rightarrow 0$ and Q tends towards value Qm.

Conclusion & Significance: The equation with two individual semi-empirical parameters Tm and Pm describes the two-phase equilibrium state of chemicals not only in the studied conditions, but also in the field of superheated crystals (system cr-g at T above the temperature of the triple point), supercooled liquid (system l-g at T below the temperature of the triple point) and supercritical fluids (system l-g at T above the critical temperature).

avitvitskiy@mail.ru