World Congress on

BIOTHERAPEUTICS AND BIOANALYTICAL TECHNIQUES

September 11-12, 2017 Dallas, USA

Fungal-mediated structural transformation of contraceptive drugs, drospirenone and etonogestrel into new metabolites

Elias Baydoun ${ }^{1}$, Sheeza Iqbal ${ }^{2}$, Nayab Shoaib ${ }^{2}$, Atia-tul-Wahab ${ }^{2}$, Colin Smith ${ }^{1}$ and M Iqbal Choudhary ${ }^{2}$
${ }^{1}$ American University of Beirut, Lebanon
${ }^{2}$ University of Karachi, Pakistan

Biotransformation is an efficient approach for structural alteration of all classes of organic compounds. This technique is effectively employed in green chemistry, particularly in drug discovery and development, as it involves a variety of enzymes during transformation which results in regio-, chemo-, and stereo-selective products. In the current study, biotransformation of an orally active contraceptive drugs, drospirenone and etonogestrel was carried out at pH 7.0 and $26 \pm 2^{\circ} \mathrm{C}$. Transformation of drospirenone with Cunninghamella elegans resulted in four new metabolites, 14a-hydroxy-drospirenone, 11-oxodrospirenone, 12 -oxo-drospirenone and $11 \beta, 14 \alpha$-dihydroxy-drospirenone, along with a known metabolite and 11α-hydroxydrospirenone. While transformation of etonogestrel with Cunninghamella blakesleeana and C. echinulata yielded three new metabolites 6β-hydroxy-11, 22-epoxy-etonogestrel, 11, 22-epoxy-etonogestrel, 10β-hydroxy-etonogestrel, along with two known metabolites 6β-hydroxy-etonogestrel, and 14 α-hydroxy-etonogestrel.

Biography

Elias Baydoun has completed his PhD at University of Cambridge, UK in the year of 1980. He is working as Professor at American University of Beirut, Lebanon. His research interests are membrane fusion in vitro, plant cell wall biosynthesis and assembly and biologically active oligosaccharides.

Notes:

