

Cancer Science & Therapy

October 21-23, 2013 DoubleTree by Hilton Hotel San Francisco Airport, CA, USA

Nanosecond pulsed electric fields abolish orthotopic rat hepatocellular carcinoma and bypass cancer mutations that evade apoptosis induction

Stephen J. Beebe Old Dominion University, USA

Pulse power using nanosecond pulsed electric fields (nsPEFs) induced cell death in N1-S1 hepatocellular carcinoma (HCC) and Jurkat cells. To induce cell death, nsPEFs disrupted the mitochondria membrane potential ($\Delta \Psi m$), which is independent of nanoporation and Ca²⁺-dependent, and induced an influx of calcium through nanopores in the plasma membrane. This follows the "two hit" hypothesis where Ca²⁺ overload and another pathological stimulus, dissipation of $\Delta \Psi m$, must be present to cause loss of cell viability. Effects of nsPEFs on Jurkat cells with deficiencies in FADD or caspase-8 had no effects on cytochrome c release or cell death, indicating oncogenic mechanisms for apoptosis evasion through death receptor pathways are readily surmountable by nsPEFs. Using Jurkat cells with deficiencies in APAF-1, nsPEF-induced cell death was caspase-dependent at lower electric fields and caspase-independent at higher electric fields. Thus, nsPEFs induce multiple forms of intrinsic cell death. Unlike apoptosis induced by heat or genotoxic stress, over expression of Bcl-xl (8-fold) in Jurkat cells had no effect on nsPEF-induced dissipation of $\Delta \Psi m$ or viability. Thus, nsPEFs can bypass cancer mechanisms that protect mitochondrial function. *In vivo* nsPEFs ablated 90% of orthotopic HCC. Caspase-9 and caspase-3, but not caspase-8, were activated. For rats with N1-S1 HCC tumors that were eliminated, a challenge injection of the same HCC cells in the same or adjacent liver lobes failed to establish tumors, while agematched naïve control rats readily grew tumors. These results suggest a host-mediated immune response after clearance of rat N1-S1 HCC with nsPEFs.

Biography

Stephen J. Beebe received his Ph.D. at the Medical College of Ohio, now The University of Toledo College of Medicine. He was as post-doctoral fellow in the Howard Hughes Medical Institute in the Department of Molecular Physiology and Biophysics at Vanderbilt University. He then was a Fulbright Scholar in Oslo Norway before serving as an Assistant and Associate Professor at the Eastern Virginia Medical School in Departments of Physiological Sciences. He is now a Professor in the Frank Reidy Research Center for Bioelectrics at Old Dominion University, Norfolk Virginia. He is the author of over 100 peer reviewed published manuscripts.

SBeebe@odu.edu